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Abstract

Dispersion of Stoneley waves is studied in a sedimentary layer of ocean bottom resting over basaltic solid
half space. Sedimentary layer is assumed a transversely isotropic poroelastic medium. Lower-most solid
half-space is assumed to be embedded with vertically aligned saturated micro-cracks and behaves transversely
isotropic to wave propagation.

Frequency equation is obtained in the form of determinantal equation. Role of phase angle is eliminated
by expressing slowness of waves in terms of phase velocity and elastic constants. Numerical solutions for
phase velocity and group velocity are obtained for a particular model. Calculations are made for different
depths of ocean and sediments. Effect of thickness and density of cracks on these velocities are observed.

Special cases are discussed which represent the absence of ocean and sediments, in the model considered.
Changes in dispersion are discussed during the stress accumulation in an earthquake preparation region.
© 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most of the epicentres of the earthquakes are in oceanic crust. Ocean ridge system is an area of
frequent seismic activity. Except near the crest of the mid-ocean ridges, the ocean floor is mantled
with sediments. Sedimentary rocks contain water-filled pore spaces after deposition and can be
modelled as water saturated porous solid. Sediments in water are believed to be deposited in
preferred orientation and behaves transversely isotropic to wave propagation. These rocks are
resting on the Igneous rocks which are pervaded by distribution of fluid-filled cracks. Cracks in a
region of earthquake preparation modify with the accumulation of stress there. These modifications
in the configuration of cracks in a focal region are believed to be the driving mechanism for the
precursors of an earthquake.

The theory of effects of cracks on the elastic solids started with the classic paper by Eshelby
(1957). The wave velocities for the elastic solids containing cracks have been approximated by
Garvin and Knopoff (1973, 1975a, b). O’Connell and Budiansky (1974) and Budiansky and
O’Connell (1976) calculated the effects of introduction of cracks on the elastic properties of an
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isotropic solid using self-consistent procedure. Hudson (1980, 1981) developed these ideas further
for dilute concentration of cracks, treating cracked solid as anisotropic one. Crampin and co-
workers (1978, 1980, 1984, 1987) studied various aspects of wave propagation in cracked solids
with presence of aligned crack leading to anisotropy. Crampin (1985) and Crampin and Atkinson
(1985) suggested the widespread distribution of aligned cracks in the top 10-20 km of crust.
Crampin (1987) explained the effects of stress accumulation before an earthquake, on the modi-
fications of the cracks present.

Seismic anisotropy due to aligned cracks has also been interpreted from the field data in the
number of studies (Crampin and Booth, 1985 ; Crampin et al., 1986 ; Chen et al., 1987 ; Lynn and
Thomsen, 1990 ; Lynn, 1991). In recent years, laboratory confirmation of the theory is performed
by Rathore et al. (1995). Using these laboratory findings Thomsen (1995) studied the elastic
anisotropy due to aligned cracks in porous rocks.

Theory of surface wave propagation in earth models is well understood. After Stoneley (1926)
and Tolstoy (1954), a large number of studies discussed the propagation of surface waves in
oceanic crust. In some studies (viz. Abubaker and Hudson, 1961), the oceanic crust is considered
to be an anisotropic solid. Sharma et al. (1991) studied surface waves in a two-layered model of
oceanic crust consisting of poroelastic sediments resting over an anisotropic bed. The recent
interpretation of field data confirmed that anisotropy present in the crust may be due to the
presence of vertically aligned and saturated cracks. Most commonly occurring anisotropy due to
the presence of cracks is transverse isotropy. Hence, poroelastic sedimentary rocks overlying a
fluid saturated cracked elastic solid half-space may be a realistic model for oceanic crust which
behaves transversely isotropic to wave propagation. Assuming the changes in dispersion behaviour
of surface waves as a possible precursor for an impending earthquake, in the present study, I
propose to study the effects of modifications of cracks in the oceanic crust on the dispersion of
Stoneley waves.

2. Geometry of the medium

A three-layered medium is considered with the uppermost layer of homogeneous liquid (medium
I) of thickness /. Intermediate layer of thickness H is a transversely isotropic poroelastic solid
(medium II) and is resting on a cracked elastic solid half-space (medium III). A system of
rectangular Cartesian coordinates is chosen with z-axis in the direction of increasing depth. Surface
z = 0 represents the interface between liquid layer and poroelastic solid layer. Hence liquid layer
occupies the region —/h < z < 0. The transversely isotropic poroelastic solid occupies the region
0 < z < H and the region z > H is occupied by cracked elastic solid half-space, as shown in Fig.
1.

3. Formulation of the problem

The objective is to study the dispersion of Stonely type surface waves during an earthquake
preparation process. Such a process is represented by continuous accumulation of stress around
focal region of eventual failure. Modifications of the cracks are the most direct effects of accumu-



M .D. Sharma | International Journal of Solids and Structures 36 (1999) 3469-3482 3471

z=-h

LIQUID LAYER
(MEDIUM I)

z=0 »X

TRANSVERSELY ISOTROPIC

POROELASTIC SOLID
(MEDIUM II)

z=H

[ e 4 o Toeemd

CRACKED ELASTIC SOLID
(MEDIUM I1I)

-

£

Fig. 1. Geometry of the medium.

lation of stress before an earthquake. Modifications may be the changes in orientation, density
and thickness of the cracks. Precursors observed are caused by these changes in crack parameters.
I propose to check the possible changes in dispersion behaviour, prior to an earthquake, as a
precursor. Two-layered model (Fig. 1) of oceanic crust is considered with region of eventual failure
in the lower-most half-space of cracked elastic solid. Sedimentary layer of ocean bottom is assumed
a transversely isotropic water saturated porous solid. Anisotropy present in this medium may be
due to the settlement of sediments in preferred orientations and presence of vertically aligned
microcracks (Crampin, 1981). Lower-most half-space (basaltic rock) is assumed a transversely
isotropic elastic solid. Anisotropy parameters for this medium are dependent upon the density and
aspect ratio (ratio of thickness to diameter of a circular crack) of the cracks present. Crack
modifications due to stress accumulation are represented by changes in crack density and aspect
ratio.

4. Displacement and stress components

Consider the two-dimensional problem of wave propagation in x—z plane. Components along
y-axis will vanish. Hence displacements are given by (u,, 0, #.) and non-zero stress components, on
the planes with normal in z-direction, will be ¢.. and o...

4.1. Medium I

For a liquid layer with z = —/ as its stress free surface, the displacement potential ¢, for a
compressional wave is given by

¢po = Aolexp (k&o(z+h)} +exp { —k&o(z+h)} exp {ik(x—c1)}] (1)
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where k denotes horizontal wave number, ¢ is phase velocity and &, = /1 —(c*/v{). Velocity of
compressional wave v, = \/m , where K, and p, denote bulk modulus and density of the liquid,
respectively.

Displacement and stress components are expressed as

U, = 0do/0x, u. = 0¢,/0z; (2)
azx = 09 O-z: = KO [82¢0/ax2 +ax2¢0/822]' (3)
4.2. Medium 11

Following Sharma and Gogna (1991), in a transversely isotropic liquid saturated porous solid,
the displacements in solid part (u,, 0, u.) and in liquid part (U,, 0, U.) are given by

6 6
u, =y fima,(mEm), u.= Y f(n)as(n)En), 4)
n=1 n=1
6 6
U.= ) fmbmEMm), U.= ), fnbs(n)E(n), (%)
n=1 n=1
where f(n), (n = 1,2,...,06), are relative excitation factors. E(n) is expressed as
E(n) = exp {ik(x—ct)+kr(n)z}, (6)
where, r(n), (n = 1,2,...,6) denote the slowness values (product of phase velocity, ¢, and vertical

slowness) for three upgoing and three downgoing quasi waves. The constants a,, as, b, and bs, the
functions of r(n), are defined in the Appendix.
The stress components in solid and liquid parts are as follows,

0., = L(0u./0x+ 0u,/0z),
0.. = Fou,/0x+ Cou./0z+ Q(0U,/ox+0U./0z),
6= Mou,/Ox+Qdu./0z+ R(OU,/0x+0U./0z). (7

A, C, F, L, M, N, Q, and R are elastic constants for transversely isotropic poroelastic solid (Biot,
1956, 1962). Following Thomsen (1986) anisotropic parameters (¢, 7y, d) are defined by
_A+2N (- N _(F—i—L)z—(C—L)2

C ; 2y=z—l; 20 C(C—1L) . (8)

2e

On similar lines an anisotropic parameter (say yx) is defined for liquid—solid coupling as
2y = M/Q — 1. These relations enable one to represent the elastic properties of this medium by the
numerical value of 4, N, O, R, ¢, y, 0 and 7.

4.3. Medium II1

Following Sharma et al. (1991), the displacements for the surface waves in a transversely
isotropic elastic solid half-space are written as
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u, = {P, exp(—ks,z) + P, exp(—ks,z)} exp {ik(x—ct)},
u. = {m, P, exp(—ks,z) +m, P, exp(—ks,z)} exp {ik(x—ct)}, )

where P, and P, are arbitrary constants. s, and s, denote the slowness for quasi-P and quasi-SV
waves, respectively. If C,,, Ci3, Cs3, Cy, Ceq are elastic constants and p is density for this medium
then

m; =(Caas; +R*)/(is;J*),  (j=1,2), (10)

57 = [—F—l—(—1)’\/F2—4C44C33R*S*]/(2C44C33), (j=12), (11)
where

J*=Cuy+Ci5, R¥=p?—Cyy, S*=pc®—Cy, (12)
and

I = R*Cy3 4 S*Cyy + (J*) . (13)
The stress components are given by

6. = Cuy (6” + a”) o= e (14)

ox 0z ox 0z

Anisotropy in the medium is caused by the presence of vertically aligned parallel cracks. Following
Thomsen (1995), the anisotropy parameters (¢,7’, ") are related to crack density () and crack
porosity (¢.) of the parallel cracks present in the elastic solid. These relations are defined as follows.

A

ny E 1 1—12): 2’_# 1; 20 = P
8_<E_ )/( —v?); =gl —(1-w(1-A) "

with

u/lE I—v  (u
A:ﬂ(E__1>1+v+<ﬂ—1>(1—2v), (16)

where, E and u denote the Young’s modulus and rigidity modulus, respectively, for the elastic
solid, in the absence of cracks. v is Poisson’s ratio for the solid grains. Barred quantities are the
corresponding parameters in the cracked elastic solid. Effect of cracks on the elastic constants,
used in (15)—(16) are defined as

E (- ENasep, Fo it 17
E—_ ;73 _KS(_V)C’ ,L_(_ ’732—\)’ ()

where, K;, K, denote bulk moduli of the fluid and solid, respectively and
D' =1—(K/K))(1 —%6(’7/4%)[(1 —v3)/(1=2v)). I? relation to aspect ratio (¢/a) of circular cracks
(of radius a and thickness c), crack porosity, ¢. = 3 mn(c/a). Anisotropic parameters are related to
elastic constants as
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. ﬁ Coes . (Ci5 +C44)2 %

2¢ = -1, 2y=—"—-1, 20 =—F— "——"F"—
Css / Ci3(Cy—Cay)  Ci

1 (18)

The relations (15)—(18) enable one to represent this medium with the numerical values of Cs;, Cy,
Kfa Ksa v, n and ¢C'

5. Boundary conditions

Following Deresiewicz and Skalak (1963), the boundary conditions appropriate for the interface
between liquid and liquid saturated porous solid are the continuity of stress components, liquid
pressure and normal component of displacement. For two-dimensional motion in x—z plane, at
z = 0, these are

(- Du+ (@) = (o)1,

(0. )u =0,
(6)11 = d)p(azz)ls
(1 _¢p)(”z)ll+§bp(Uz)n = (u.). (19)

¢, 1s porosity of the poroelastic solid (Medium II).

At z = H, i.e., interface between liquid saturated porous solid and elastic solid, the appropriate
boundary conditions, following Deresiewicz and Skalak (1963), are the continuity of stress and
displacement components. A condition restricting the flow of liquid from poroelastic solid to
elastic solid is also considered. These are given by

(0. = (@)u+ (o),

(0. )m = (6.,

() m = (U,
() = (U)n,
(u)n = (U (20)

6. Dispersion equation

Making use of relations (2)—(5), (7), (9) and (14) in the boundary conditions defined by (19)
and (20), a system of nine homogeneous equations in f(n), (n =1,2,...,6); P,, P, and A4, is
obtained. Non-trivial solution of this system of equations requires a determinantal equation to be
satisfied. The equation is

Det {a,,} =0, Q1)

where a,, are elements of a square matrix of order 9. These elements are defined as follows.
Form=1,2,...,6:
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{(C+Q)a;(m) +(Q+ R)bs(m)}r(m) + (F+ M)a, (m) +(Q+ R)b, (m),
aa = a (M)r(m) —a;(m),

= {Qa;(m)+ Rb;(m)}r(m)+ Ma, (m)+ Rb, (m),

Uy = a3 (M) + Py {bs(m) —as(m)},  as, = a,,X(m), ag, = a,X(m),

=
3
Il

Q
4
|

= a3, X(M),  ag,, = a,(m)X(m), ay,, = {as(m)—bs(m)}C(m), (22)

where, X(m) = exp{r(m)kH}.
Form=17,8:

a, =0,(1=1,2,3,4); as; = —R,, ass=—Ry; ag; =0, des=0>;

az; =8y, a3 =295; dgu=—1; ay, =0, (23)
where

2 2

R, =Cis+ %(CMS?‘FR*), 0= C44(C1;/S}*_LR*)’ S; = @‘fj.;m. (24)

Remaining elements are
c2
a, =K, 2)07, ayo =0, ay9 = Qpary, a9 =—S5 ay=0;(/=35,6,...,9), (29)

0

where for ¢ <wv,:S} = exp(khly) —exp(—kh&y); St = &, {exp(khé,)+exp(—khéy)}; and for
¢ 20y (So = i8y) 1 Sy = sin(kh&y) 5 Sg = &G cos(khly).

Equation (21) is the frequency equation for the propagation of Stoneley waves in the two-
layered model of oceanic crust. This equation can be represented as F(c¢, kH,kh) = 0 and hence
indicates the dispersive nature of existing surface waves. Such a surface wave can exist if for given
values of dimensionless quantities kH and k#, a real value of phase velocity c is found satisfying
this frequency equation and when

(i) s7 (j=1,2), given by (11) are real and positive;
(i) r(m) (m=1,2,...,6), used in (6), are either purely real or imaginary.

6.1. Special cases

(1) Uppermost layer (uniform liquid) can be eliminated by reducing the thickness /4 of this layer
to zero. This modified model represents the continental crust and particularly is suitable for
Himalayan type crust where the upper layer consists of marine sediments.

(i) Middle layer (poroelastic solid) can be eliminated by reducing the thickness H of this layer to
zero. The frequency eqn (21) then represents the dispersion of Stoneley waves in a cracked
elastic solid lying under the uniform layer of liquid. Such a model represents the oceanic crust
around mid-ocean ridges where the sediments are absent.

(iii) Substituting both /2 and H by zero, the problem reduces to the propagation of Rayleigh waves
in a transversely isotropic elastic solid half-space with anisotropy depending upon crack
parameters. The frequency equation (21) reduces to O, R,—Q,R, = 0.
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7. Numerical results

To solve the frequency eqn (21) and to study the dispersion of surface waves, numerical work
is restricted to a particular model. The two layered model of oceanic crust is considered to be water
saturated sandstone resting over basaltic bed rocks. Numerical values of relevant constants are
assumed as follows:

7.1. Medium I

Uniform layer of in-viscid water is represented by

K, =2.14x 10" dyne/cm?, p, = 1 gm/cm?.

7.2. Medium I1

Sedimentary layer of transversely isotropic poroelastic solid is represented by water saturated
sandstone. The elastic and dynamical constants for water saturated sandstone (Yew and Jogi,
1976) and anisotropic parameters for Taylor sandstone (Thomsen, 1985) are given by

A =3.06x10'"" dyne/cm* p,; = 1.9032 gm/cm’
0 =0.13x10'""dyne/cm* p,, =0

R =0.637x10'° dyne/cm* p,, = 0.268 gm/cm*
N =9.22x10""dyne/cm® ¢, = 0.268

e=0.11, y=0.255, 0= —0.035.

For simplicity solid-liquid coupling is assumed isotropic, i.e., ¥ = 0.

7.3. Medium II1

Lower-most solid half-space is a cracked (transversely isotropic) elastic solid. The elastic con-
stants are derived from density and vertical speeds o and f of P and S waves, respectively. For
upper pillows of basalt: o« = 5 km/s, f = 2.75 km/s and p = 2.7 gm/cm® are assumed. Anisotropic
parameters are derived from Ki/K; (ratio of bulk moduli of liquid in cracks and solid grains), v
(Poisson’s ratio of solid),  (crack density) and ¢, (crack porosity). It is assumed that K;/K, = 0.053
(water saturated cracks) and v = 0.28. Values of n and ¢, are varied to check the effects of
variations of crack parameters on dispersion.

For the above mentioned values of various constants the frequency eqn (21) is solved for the
smallest (i.e., fundamental mode) values of non-dimensional velocity c¢/v, (v, is the velocity of
sound in ocean water) and for the given values of kH. Thickness of water layer is fixed by assuming
a numerical value for #/H. Group velocity (U) is obtained numerically using the formula
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Fig. 2. Variations in dispersion with crack density. (a) Phase velocity. (b) Group velocity.
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8. Discussion and conclusions

The layered model of crust is represented by the numerical values of various parameters as given
in the previous section. In this particular type of oceanic crust Stoneley waves exist only for smaller
values of dimensionless wave number kH (i.e., kH < 0.07). Figure 2 exhibits the variations in
phase velocity and group velocity with kH for different values of crack density. Value of ¢/a = 0.005
and & = 0.5 (h/H and H denote the depth of ocean bottom and thickness of sediments, respectively).
Itis observed that increase in crack density increases the velocity of surface waves which is opposite
to the behaviour of body waves. As expected, velocity of surface waves decreases with the increase
of kH but this decrease is so fast that group velocity turns negative for kH > 0.05, i.e., dispersion
is large enough to stop surface waves from carrying energy in the direction of propagation. Figure
3 shows the change in phase velocity and group velocity for different values of aspect ratio of
cracks with = 0.2 and #/H = 0.5. However these velocities increase with the increase of aspect
ratio but this increase is negligible. Dispersion curves for different values of #/H (with n = 0.2 and
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Fig. 3. Variations in dispersion with aspect ratio of cracks. (a) Phase velocity. (b) Group velocity.

¢/a = 0.005) are shown in Fig. 4. It is observed that velocity of surface waves decreases slightly
with the increase of //H, only when either ocean is very deep or sediments are very thin. Velocity
of Rayleigh waves in a transversely isotropic elastic solid (basalt) is found to be 1.78 times the
velocity of sound in water.

It is concluded that

(1)

(if)

Change in crack density has a significant effect on velocity of surface waves. For example,
phase velocity may increase from 5% (kH < 0.01) to 50% (kH > 0.05) and group velocity
may increase beyond 50% (kH > 0.04). Whereas, increase of crack density decreases the
velocity of body waves, the velocity of surface waves increases with the increase in crack
density. According to recent studies (Crampin and Zatsepin, 1997 ; Zatespin and Crampin,
1997) changes in crack density controls the fracture behaviour of rocks in the crust and hence
significant dispersion changes can be expected during the stress accumulation in an earthquake
preparation region.

The velocities of surface waves are not disturbed by the changes in aspect ratio of cracks.
Studies indicate that the change in aspect ratio of cracks is the most likely change at the time
of eventual failure in a focal region. Hence changes in dispersion should disappear as the
failure process starts.



M .D. Sharma | International Journal of Solids and Structures 36 (1999) 3469-3482 3479

s L/ H=0
h/H=0.1
++»ewh/H=1
----- h/H=5
1.80 } 1.80
1.60 — 1.60 ]
1.40 1.40
1.20 120 -]
>Q : 1‘—Q :
3] S0 ]
= 1.00 - = 1.00
£ ] £ ]
Q ~ Q -
2080 o 2080
g J 5 i
2 2 0 ]
R~ 0.60 — ©0.60
0.40 - 0.40 H
0.20 — 0.20 J
0.00 T T T T T T ) 000 T T T T T T !
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
WAVE NUMBER(kH) WAVE NUMBER(kH)
a) PHASE VELOCITY b) GROUP VELOCITY

Fig. 4. Variations in dispersion with thickness of layers. (a) Phase velocity. (b) Group velocity.

(iii) Phase velocity and group velocity may not get any sudden change as surface waves propagate
from continent to ocean or ocean to continent.

(iv) Only sudden and large increase (decrease) in ocean depth (sediment thickness) may affect the
dispersion of surface waves.

(v) For a given wavenumber, existence of surface waves is more likely in thinner sediments.

The present study considers the surface wave propagation in a more realistic model of oceanic
crust. Special cases are discussed to model the continental crust and crust around mid-ocean ridges.
Dispersion variations with the changes in crack parameters may help in identifying an earthquake
preparation region and to study crack modifications there.
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Appendix

Following Sharma and Gogna (1991), wave propagation in a transversely isotropic poroelastic
solid is controlled by the cubic equation in a variable V (say). If V|, V, and V; denote the real and
positive roots of this equation then slowness values r(m) (m = 1,2,...,6), are defined as

)=V, r@=Voe 1) =Vs:
rd) = —r(), r(5) =-r?2), r®6)=—r3).
This cubic equation is
T,V -T\V*+T;V-T,=0.
The coeflicients 7; (j = 0, 1, 2, 3), are defined as follows.
Ty =pnLlX, T,=T,+T,,
T, =Ty ¢* + Ty ? +Tsy, Ty= T+ Tsrc* +Ts3¢7 + Ty,
where
T, = —XZ+p,5LY),
T, =p»n{2N+ L)X+ M[Q(F+2L)—CM]+Q(FM—AQ)
+ R[AC—F(F+2L)]}
T, =(Y+p,L)Z,
Ty, = p11p22[Q° +M>—(C+A+2N)R]—2p7,[MQ— (F+2L)R]+2p3,
(L—N)C+2p1,02:[(C+A+2N)M —2(F+2L)Q] + p3,[F(F+2L) — AC]

T, = p22{3NX+[AC—F(F+2L)+L(A+2N)—CN]R+(FM—AQ)Q
+NQ*—LM?+(F+2L)MQ—CM?}
Ty, = _227 Ty = —(Y+pnl)Z, Ty3,=—XZ+p),LY), Ti4=pyplX,

with
X = CR—Qz, Y=p1R+p:»nC—2p,0,Z = p11p22_p%23
X/=(A+2N)R_M2, Y/=p11R+p22(A+2N)_2p12M,

A, C, F, L, M, N, Q, R are elastic constants for transversely isotropic poroelastic solids. p;;, p;»
and p,,, the dynamical parameters for poroelastic solids, are defined as

Pri+pPi2 :(l_d)p)psa P2t P = d)ppf;

where p;, pr denote the densities of solid grains and fluid, respectively and ¢, is porosity.
The coefficients a,(n), a;(n), b,(n), by(n) used in eqns (4) and (5) are given by
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B = b = b =,

D)’

a(n) =

where,
Xi(m) = {rm* X =[rmP[(LR+X) — > Y]+ Zc* + LR} p2y — (ZR+p3,L)c?
Xy(n) = —[rMP[(F+ L) R—MQlpy, +r(m){(F+L)R—MQ
+[012022(M+ Q) —pi, R—p3 (F+ L)]c*}
X;(n) = —pioAlrm]* X —=[r(m)]* {pan[(F+ L)Q — MCl +p 1, [MQ
—(F+2L) R+ p 1, Y} —p 1 Ze* +(ZM+p 2pas L) — pyy ML
Xy(n) = =[rmP {[CM — (F+L)Qlpss — pra X} +1(n) {p12[MO
—(F+2L)Rl+ p3s LM +p 5 [p1 R+ p2n(F+ L) —p 1, 01> — prapa Mc?}
D(n) = /X3 () + X3 (n) + X3 (1) + X3 (n)
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